Contrast & Compress: Learning Lightweight Embeddings for Short Trajectories

Abstract

The ability to retrieve semantically and directionally similar short-range trajectories with both accuracy and efficiency is foundational for downstream applications such as motion forecasting and autonomous navigation. However, prevailing approaches often depend on computationally intensive heuristics or latent anchor representations that lack interpretability and controllability. In this work, we propose a novel framework for learning fixed-dimensional embeddings for short trajectories by leveraging a Transformer encoder trained with a contrastive triplet loss that emphasize the importance of discriminative feature spaces for trajectory data. We analyze the influence of Cosine and FFT-based similarity metrics within the contrastive learning paradigm, with a focus on capturing the nuanced directional intent that characterizes short-term maneuvers. Our empirical evaluation on the Argoverse 2 dataset demonstrates that embeddings shaped by Cosine similarity objectives yield superior clustering of trajectories by both semantic and directional attributes, outperforming FFT-based baselines in retrieval tasks. Notably, we show that compact Transformer architectures, even with low-dimensional embeddings (e.g., 16 dimensions, but qualitatively down to 4), achieve a compelling balance between retrieval performance (minADE, minFDE) and computational overhead, aligning with the growing demand for scalable and interpretable motion priors in real-time systems. The resulting embeddings provide a compact, semantically meaningful, and efficient representation of trajectory data, offering a robust alternative to heuristic similarity measures and paving the way for more transparent and controllable motion forecasting pipelines.

Type
Publication
2025 IEEE International Conference on Intelligent Transportation Systems (ITSC)
Abhishek Vivekanandan
Abhishek Vivekanandan
Research Fellow at FZI Forschungszentrum Informatik

My research interests include distributed robotics, mobile computing and programmable matter.